Twikit Custom Integration

1.1.2

Twikit Custom Integration

This document is the technical documentation for integration with Twikit Customization. It will give you access
to our JavaScript Plugin (visualisation/customization engine) and our automated manufacturing process.

Integration Publisher

The Integration Publisher manages everything related to the integration. It provides:

a testing environment for new products, as well as changes to existing products
an API to our manufacturing process

a configuration interface for webhooks and other settings

a link to our JavaScript Plugin (which governs visualization and customization)
a comprehensible guide on its usage

Customer -> Production Flow

N —

© N OB w

9.

10.
11.
12.
13.

14.
15.
16.
17.
18.

Customer goes to the Client website
Customer navigates to a twikit customizable product
o Client has the Twikit Product Key linked to this product (key can be found in the publisher)
Client loads the Twikit JavaScript Plugin
Client tells the JavaScript plugin which product to load
The JavaScript plugin creates a visualisation, and a set of parameters.
Client shows the visualisation and the parameters to the customer
The customer changes parameters until satisfied and clicks the “add to cart” button
Client tells the JavaScript API to save the customized product, and gets a Configuration ID
Client links the Configuration ID to the order item ien the cart
The customer proceeds to checkout and pays for their order
Client verifies the payment, all goes well
Client sends an automated signal to Twikit (Rest API) to start production on these paid order items
Twikit verifies the integrity of the order with security algorithms
o This can include double-checking with Client’s servers to make sure the order is valid
Twikit creates a printable 3D mesh and alerts the manufacturer
The manufacturer downloads the mesh and prints it, then sends it to Client
The manufacturer logs into our system and marks the order as complete
Twikit uses a configured Webhook to send a signal to Client that the order has been printed
Client finishes the order and handles shipping and client communication

Product creation Flow

1.

w

Client asks Twikit to create a product

o Alternatively, Client may use Twikit's Product Builder to create a product
Twikit creates the product for Client and adds it to the system
Client verifies the product is working as intended using the publisher
Twikit publishes the product

o This will make it available for inclusion on the Client website

o Twikit sends a signal to the Client system that a new version is available
Client includes the newly published product on their website

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

JavaScript Plugin

Including the script

To use the JavaScript API, which enables visualization, you must first include the Twikit Plugin Script. This
script contains mostly logic, but also some data required for rendering. For this reason, every time we change
something to any product, we will, after testing, publish a new script containing all required logic & data to a
new URL, which will trigger a webhook to your system. This is done to guarantee maximum stability.

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

Initializing the script

First, it is recommended you check if the browser is compatible with the twikit software:

window.twikit.canVisualizeForBrowser(); // returns true or false

Once the script is loaded, you will be able to initialize the JavaScript plugin in the following way:

var twikitContext = window.twikit.createContext (productKey, locale, target,
options) ;

Parameters:

productKey [the key of the product (you can get the keys of the products from our publisher).

locale The localization to use for translations.
target The target element for the visualisation (html element, jQuery element or jQuery selector)
options JSON object which may contain any of these callbacks:

loaded: function(): void

parametersReady: function (parameters: JQuery): void
statusChanged: function (progress: number, status: string): void
variationChanged: function(variation: IVariation): void
previewBackgroundColor: string //#ffffff by default

IVariation: {
id: string,
sku: string,
price: number

}
loaded is called when the plugin is fully loaded and drawn.

parametersReady is called when the parameters are ready. parameterElements
contains HTML elements containing linked & bound parameters.

statusChanged is called when the status changes. progress is a percentile progress
towards rendering (0-100). Status can be ready, loading or busy.

variationChanged is called when a change in parameters causes the configuration to be
of another variant. Variants are defined to group categories of customization into chunks
that have the same price and SKU.

previewBackgroundColor is the color to be used in the background when the preview
is rendered (for cart etc.) If left blank, transparent is used.

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

Example use:

var visualisationTarget = $('#visualization');
window.twikit.initialize('diamond-letter-jewel', 'default',
visualisationTarget , {

loaded: function() { console.log('twikit is done loading'); 1},
parameterReady: function (parameters) {
$ ('#parameters') .append (parameters) ;

by

statusChanged: function (progress, status) {

S ('#progressBar') .css('width', progress + '%');
if (status == 'ready')

S ('#progressBar') .hide () ;
S ('"#spinner') .toggle (status !== 'ready'):

by
variationChanged: function(variation) {
console.log('variation changed', wvariation);

by

previewBackgroundColor: '#eeeceee'

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

Adding a product to the cart

When the customer adds the product to their cart, we must be able to identify the customization parameters for
their order. Twikit will store this data for you and generate a customized image to display in the cart overview
or during checkout. We will provide a unique ID for this configuration, which will allow you to later (after
payment), schedule this configuration for production.

This is done in the following way (assuming the variable twikitContext is initialized as examplified earlier):

twikitContext.save (savedCallback) ;

Parameters:

savedCallback This function is called when the product is done saving. Its signature should be:
function(err: any, saveData: ISaveData): void

The “saveData” parameter contains these options:

ISaveData: {

configurationId: number,
previewUrl: string

Example use:

S ('#orderButton') .click (function () {
twikitContext.save (function (err, saveData) {
if (err) return console.warn(err); // maybe alert customer?
S('"#twikit-configuration-id') .val (saveData.configurationId) ;
S ('"#customized-preview-url') .val (saveData.previewUrl) ;
S('#orderForm') .submit () ;
b
})

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

Rest API

For transactions that require security, or are not directly dependent on user input, we provide a rest API that

can be consumed by Client.

The endpoint (base url) for this api is:

https://custom-integration-publisher.twikit.com/api/vl

Create Order

In order to start production of a client’s configuration, an API call must be made to create an order. This order
will then automatically be executed by Twikit. An order is a group of configurations earlier stored by Twikit.

To create an order:

endpoint lorders/{integration-id}
method POST
request {

orderPayload: string, // stringified IOrderPayload

hash: string

IOrderPayload: {
items: IOrderItem[],
identifier: string,
billingAddress: IOrderAddress,
deliveryAddress: IOrderAddress,
data: any,

IOrderItem: {
configurationId: number,
amount: number,
identifier: string

IOrderAddress: {
firstName: string,
lastName: string,
email: string,
addressLinel: string,
addressLine2: string, // optional
zip: string,
city: string,
countrylso: string,
companyName: string, // optional
companyVat: string, // optional
phone: string // optional

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

}

Integration-id is the identifier as shown in your site’s configuration.

payload is a string containing the json of the TOrderPayload type. This is sent
intentionally as a string to ensure consistent hash generation on both sides.

items is an array of order items belonging to a single order. Only items with a twikit
configuration ID should be sent to our API. These configuration IDs should be those returned
by the save function on the twikitContext in JavaScript.

identifier should contain your unique identifier for the order/orderltem. We will use this
later (see webhooks) to verify the integrity of the order to prevent fraud. Twikit will only
process an order once. If you send two orders with the same identifier, they will be
considered the same orders and the second one will bounce back.

amount is the amount to be produced.
data can contain any data. It will be sent back for validation, we will ignore its contents.

hash is the security hash. This must contain md5 (orderPayload + payload-secret)
to ensure no alterations to the payload occurred in transit.

Our application will provide you with this payload-secret, it will be valid until invalidated and
can be found in your site’s configuration.

billingAddress & deliveryAddress should contain the addresses to which the order
should be billed and delivered. If the order should be delivered to you for post-processing,
you should set the deliveryAddress to your address. Similarly, in most cases the item will be
billed to you after which you generate the customer’s bill, so you can set the billing address to
your address too.

response

{
resultMessage: string,
resultCode: number,
resultCodeName: string

}

If all goes well, you will receive an response with http status 200 and the message that the
order has been created and either set to paid (resultCode 1) or unhealthy (resultCode 2).

For all other failure paths the http status code will not be 200 (usually 400 or 500 depending on
the error) and the resultcode and resultmessage will give you more insight in what went wrong.

At the moment the defined resultcodes are:

0: UnexpectedError, the catch all for not yet finer defined errors

1: OrderCreatedSuccesfully, the order was created successfully (Succes!)

2: OrderCreatedUnhealty, the order was created but could not be verified (see verification
webhook)

3: VerificationFailed, webhook verification declared the order invalid

4: OrderPayloadParsingFailed, we could not parse the orderPayload object

5: HashParameterEmpty, the hash parameter was empty

6: Md5SHashMismatch, the md5 hash did not match the orderPayload string

7: OrderPayloadParameterMissing, something went wrong creating the order from the order
payload. Check the message to see what went wrong.

8: OrderPayloadValidationFailed, the order payload is missing a required parameter. Check
the message to see which one.

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

9: IdentifierAlreadyExists, the orderPayload or orderltem identifier is already in use in our
system, indicating and attempt to create an order that was already created.
10: CouldNotFindConfig, One of the configurations in the order could not be found.

As the system evolves, more resultcodes might be added but once defined they should never
change. The only exception is errors that currently return 0: UnexpectedError might in the
future be updated to return more specific errors if they occur often enough.

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

Order Production File

Instead of creating a Twikit-fulfilled order, producible files can be directly requested by configuration ID. Twikit
will automatically create an internal order when this happens.

To directly order a production file:

endpoint

/configuration/{integration-id}/export

method

POST

request

{
payload: string, // stringified IConfigExportPayload

hash: string

}

IConfigExportPayload: {
configurationId: number,
amount: number,
data: string | json serializable object

}

Integration-id is the identifier as shown in your site’s configuration.

payload is a string containing the json of the IConfigExportPayload type. This is sent
intentionally as a string to ensure consistent hash generation on both sides.

hash is the security hash. This must contain md5 (payload + payload-secret) to
ensure no alterations to the payload occurred in transit.

Our application will provide you with this payload-secret, it will be valid until invalidated and
can be found in your site’s configuration.

configurationId is an of order items belonging to a single order. Only items with a twikit
configuration ID should be sent to our API. These configuration IDs should be those returned
by the save function on the twikitContext in JavaScript.

amount is the amount of items that will be produced based on the file.

data is an optional attribute that may be used to send extra (third-party) data to our
systems. This data must a serializable json object or a string.

response

If all goes well, you will receive an response with http status 200. The body of the response will
contain a ZIP file containing the produced files.

For all other failure paths the http status code will not be 200 (usually 400 or 500 depending on
the error) and the resultCode and resultMessage will give you more insight in what went
wrong.

At the moment the defined resultcodes are:
0: UnexpectedError, the catch all for not yet finer defined errors
1: OrderCreatedSuccesfully, the order was created successfully (Succes!)

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

2: OrderCreatedUnhealty, the order was created but could not be verified (see verification
webhook)

As the system evolves, more resultcodes might be added but once defined they should never
change. The only exception is errors that currently return 0: UnexpectedError might in the
future be updated to return more specific errors if they occur often enough.

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

10

Webhooks

When Twikit wants to verify a payment or let you know that production of a certain item is finished, we will
attempt to use a webhook to verify this with you. The endpoint for these webhooks can be configured in our
user interface. We will assist you with the set-up of these webhooks.

Payment Verification

After you have sent us a payment, we will use a web-hook to verify the validity of the transaction. You must
check that the order is indeed in a status of being confirmed.

action If no webhook is configured, we will not verify payments. (not advised!)
If payment verification is faulty (error), we will create the order as “unhealthy”. It will not start
automatically and we will contact you.
If payment verification is unsuccessful (invalid order), we will ignore the order.
If payment verification is successful, we will create the order and automatically process it.
endpoint as configured by you in our system
method POST
request {
configurationIds: number|[],
identifier: string
}
These are copied over from the original request as sent to us by you.
response {
error: string,
success: boolean
}
If error is filled in, or the status code is not 200, we will assume a faulty verification.
If success is false, we will assume an unsuccessful verification.

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

11

Production Completion

action If no webhook is configured, we will not send you this message
If the webhook is faulty (error), we will retry once after 5 minutes.
endpoint as configured by you in our system
method POST
request {
identifier: string;
url: string;
success: boolean;
error: string;
}
identifier will contain the identifier for the order originally passed to us.
url will contain the tracking data provided by the producer.
response {

}

If error isfilled in, or the status code is not 200, we will assume a faulty verification & retry

once.

error: string

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

12

Order Completion

Our back-office system allows the producer to mark an order as “ready”. At this point, we will automatically
send you an update within a few minutes.

action If no webhook is configured, we will not send you this message
If the webhook is faulty (error), we will retry once after 5 minutes.

endpoint as configured by you in our system
method POST
request {

identifier: string;
trackingUrl: string;
trackingId: string;
lineItems: ILinelItem[];
}
ILineItem: {
identifier: string;
configurationId: number;
previewUrl: string;
productKey: string;
amount: number;

identifier will contain the identifiers for the order & line item originally passed to us.
trackingUrl & trackingId will contain the tracking data provided by the producer.

response {
error: string

If error isfilled in, or the status code is not 200, we will assume a faulty verification & retry
once.

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV

Website Publication

When changes are made in our system, they are always contained within a sandbox environment until the
“‘publish” button is pressed. When this happens, we will publish a new version of the JavaScript plugin. This
might include code changes, as well as product changes and additions. This new version will be hosted on a
new URL (to avoid caching issues). This webhook will notify you of this, and send you the new URL.

action If no webhook is configured, we will not send you this message. You will need to manually get
the URL from our website when you are ready for the new version.
If the webhook is faulty (error), we will trigger an internal alarm and contact you.
endpoint as configured by you in our system
method POST
request {
scriptUrl: string,
products: IProduct]]
}
IProduct: {
key: string
}
scriptUrl will contain the new, fully qualified, https URL to our JavaScript file.
response {

error: string

}

If error is filled in, or the status code is not 200, we will assume a faulty verification.

Twikit Custom Integration - Confidential. All Rights reserved. Twikit NV
14

